Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 931: 172528, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38663620

RESUMO

In Transit-Oriented Development (TOD), the close integration of residential structures with community activities and traffic heightens residents' exposure to traffic-related pollutants. Despite traffic being a primary source of particulate matter (PM), the compact design of TODs, together with the impact of urban heat island (UHI), increases the likelihood of trapping emitted PM from traffic, leading to heightened exposure of TOD residents to PM. Although PM originates from two distinct sources in road traffic, exhaust and non-exhaust emissions (NEE), current legislation addressing traffic-related PM from non-exhaust emissions sources remains limited. This paper focuses on two TOD typologies in Manchester City-Manchester Piccadilly and East Didsbury-to understand the roles of TOD traffic as a PM generator and TOD place design as a PM container and trapper. The investigation aims to establish correlations between street design canyon ratios, vehicular Speed, and PM10/PM2.5, providing design guidance and effective traffic management strategies to control PM emissions within TODs. Through mapping the canyon ratio and utilising the Breezometer API for PM monitoring, the paper revealed elevated PM levels in both TOD areas, exceeding World Health Organization (WHO) recommendations, particularly for PM2.5. Correlation analysis between canyon configuration and PM2.5/PM10 highlighted the importance of considering building heights and avoiding the creation of deep canyons in TOD design to minimise the limited dispersion of PM. Leveraging UK road statistics and the PTV Group API for vehicle speed calculations, the paper studied the average speeds on the TOD roads concerning PM. Contrary to conventional assumption, the correlation analyses have revealed a noteworthy association shift between vehicular speed and PM concentrations. A positive correlation existed between speed increase and PM increases on arterial roads. However, a negative correlation emerged on main, collector, and local streets, indicating that PM levels rise for both PM10 and PM2.5 as Speed decreases. These findings challenge the traditional assumption that higher Speed leads to increased emissions, highlighting the potential impact of NEE on PM concentrations. This paper calls for thorough design considerations and traffic management strategies in TOD, especially in dense areas, considering building height, optimising traffic flow, and enhancing compromised air quality associated with vehicular emissions.

2.
J Healthc Eng ; 5(2): 247-60, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24918186

RESUMO

This paper investigates the energy performance of three medium-sized healthcare buildings in Victoria, Australia, that operate only during the daytime. The aim is to provide preliminary understanding of energy consumption in this particular typology in Australia in relation to the available benchmarks. This paper also identifies the differences of energy consumption between different functional areas within medium health facilities. Building features and operational characteristics contributing to the variations in healthcare energy performance are discussed. The total annual energy consumption data ranging from 167-306 kWh/m(2) or 42-72 kWh/m(3) were compared against international data from various climatic zones. Some of the drivers of energy consumption were determined and potentials for energy and water conservation were identified. Comparison with international standards shows a possibility to achieve lower energy consumption in Victorian healthcare buildings.


Assuntos
Fontes Geradoras de Energia , Instalações de Saúde , Arquitetura Hospitalar , Serviço Hospitalar de Engenharia e Manutenção , Benchmarking , Conservação de Recursos Energéticos , Modelos Teóricos , Vitória
3.
Adv Exp Med Biol ; 530: 319-29, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14562728

RESUMO

RSR13 is a synthetic allosteric modifier of hemoglobin that decreases the oxygen binding affinity of hemoglobin, potentially increasing oxygen availability to hypoxic tissues. Using in vivo EPR to directly measure cortical pO2, we examined whether RSR13 would improve brain tissue pO2 following severe hemorrhagic shock in rats. Hemorrhagic shock was induced by withdrawing blood (2.7-2.8 mL/100 g/15 min). Following a 30 min shock period, resuscitation was performed by infusion with Ringer lactate plus RSR13 (150 mg/kg) or saline (control). Following hemorrhage, brain pO2 decreased by about 14 mm Hg in both groups. Following crystalloid resuscitation brain pO2 remained depressed in the control group but returned to the pre-hemorrhage values in the rats that received RSR13. RSR13 immediately increased and maintained the paO2 while controls had a very gradual increase towards pre-hemorrhage values. There was no difference in the blood pressure or heart rate between groups. RSR13 may have useful applications to decrease the effects of acute hemorrhagic hypoxemia by increasing brain oxygenation.


Assuntos
Compostos de Anilina/farmacologia , Encéfalo/efeitos dos fármacos , Hemoglobinas/metabolismo , Oxigênio/metabolismo , Propionatos/farmacologia , Choque Hemorrágico/metabolismo , Regulação Alostérica , Animais , Encéfalo/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Masculino , Oximetria/métodos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...